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Abstract

Here we report a method that converts standard smoothed particle hydrodynamics (SPH) into a working shock-
capturing scheme without relying on solutions to the Riemann problem. Unlike existing adaptive SPH simulations,
the present scheme is based on an adaptive kernel estimation of the density, which combines intrinsic features of both
the kernel and nearest neighbor approaches in a way that the amount of smoothing required in low-density regions is
effectively controlled. Symmetrized SPH representations of the gas dynamic equations along with the usual kernel sum-
mation for the density are used to guarantee variational consistency. Implementation of the adaptive kernel estimation
involves a very simple procedure and allows for a unique scheme that handles strong shocks and rarefactions the same
way. Since it represents a general improvement of the integral interpolation on scattered data, it is also applicable to
other fluid-dynamic models. When the method is applied to supersonic compressible flows with sharp discontinuities,
as in the classical one-dimensional shock-tube problem and its variants, the accuracy of the results is comparable, and
in most cases superior, to that obtained from high quality Godunov-type methods and SPH formulations based on
Riemann solutions. The extension of the method to two- and three-space dimensions is straightforward. In particular,
for the two-dimensional cylindrical Noh�s shock implosion and Sedov point explosion problems the present scheme
produces much better results than those obtained with conventional SPH codes.
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1. Introduction

The method of smoothed particle hydrodynamics (SPH) was originally devised to simulate a wide variety
of problems in astrophysics involving the three-dimensional motion of compressible fluid masses at differ-
ent spatial scales [1,2]. In general, SPH is a particle method that relies on a Lagrangian description of the
fluid, and unlike ordinary finite-difference (FD) methods, it is gridless and easy to handle under complicated
physics and arbitrary geometries. For details on the general aspects of SPH and its applications to astro-
physical and cosmological flows, see the review by Monaghan [3] and references therein. Because of its sim-
plicity and robustness, it has rapidly become a useful tool for applications in numerous other areas,
including fluid dynamics [4–9], magnetohydrodynamics [10–12], free surface and interfacial flows [13–16],
multi-phase flows [17], and computational mechanics, where it has primarily been employed to study the
response of elastic bodies to induced large deformations [18–20], high-velocity impacts, penetration, and
shock damage in solids [21–28], and explosion phenomena [29,30].

Since its invention, SPH has been the subject of extensive research to address major technical difficulties
associated with it. As a result, a large amount of proposed formulations exists in the literature that improve
the accuracy of the approximation at boundaries [31–33] and near sharp fluid discontinuities [34–37], ad-
dress the tensile instability [20,32,38], and solve for inconsistency and momentum preservation problems
[39,40]. In particular, when conventional SPH is applied to model supersonic flows of an ideal gas over
a step, the resulting shock fronts are not as sharp as those obtained with high quality Godunov-type
schemes based on solutions to the Riemann problem. In general, SPH gives shock profiles that appear
blurred by viscosity and significantly much broader than those for exact, or well approximated, Riemann
solutions.

Attempts to improve the performance of SPH on unsteady compressible flows with strong shocks were
first reported by Monaghan [34], and more recently, by Inutsuka [35] and Cha and Whitworth [36]. The
former author found that working with the specific total energy equation rather than the specific internal
energy equation and relating the dissipative terms in the SPH equations with those appearing in Riemann
formulations, may significantly improve the accuracy of SPH in reproducing the analytical solutions of the
one-dimensional (1D) classical Sod�s [41] shock tube, blast wave [42], and wall shock problems. The method
was also seen to perform well for test problems where many shock-capturing FD schemes could fail, as is
the case for a slowly moving shock wave [43] or for the Sjögreen test [44] in which two strong rarefaction
waves move apart leaving behind a region of very low density. In addition to working with an equation for
the total energy, the other fundamental change operated by Monaghan [34], with respect to conventional
SPH schemes, lies on the form used for the artificial viscosity terms. In particular, any pair of interacting
particles is treated as the left and right states of the Riemann problem, with the changes between the two
particles being taken along the line joining them. In this way, a signal velocity can be constructed in analogy
to the form of the eigenvalues of the 1D Euler equations. The artificial viscous acceleration term is then
defined as the product of the signal velocity and the velocity difference between the two particles; the latter
quantity serving to approximate the jump in the velocity across characteristics. Similarly, the artificial
viscous heating is obtained by multiplying the signal velocity with the corresponding jump in the total
energy.

In spite of the high accuracy achieved for the shock-tube problem, a drawback of Monaghan�s [34] for-
mulation is that it is not variationally consistent because symmetrized SPH expressions for the pressure
forces in the momentum equation and the $ Æ (pv) term in the total energy equation are used in conjunction
with a time-integrated solution to the continuity equation rather than with the usual kernel smoothing for
the density. According to the analysis of Bonet and Lok [39], an SPH scheme based on symmetrized
representations of the equations of motion and energy would be variationally consistent only if the density
is calculated using the kernel summation. In addition, Monaghan�s [34] scheme is not able to handle strong
shocks and rarefactions the same way. This is the case of the continuity equation which was employed in all
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Riemann shock simulations with the exception of the Sjögreen test, which demanded the use of the kernel
summation for the density to yield accurate results. A further consideration regards the numerically calcu-
lated density profiles in the blast wave and wall shock problems, where the postshock value was always in
excess of about 10% over the analytical solution.

More involved reformulations of SPH for handling strong shock phenomena were reported indepen-
dently by Inutsuka [35] and Cha and Whitworth [36]. While both formulations are based on similar
SPH representations, in the one proposed by Inutsuka [35], the evolution equations for the particles are
obtained in strict conservation form by direct convolution of the exact equations with the kernel function.
Evaluation of the spatial integrals is performed by interpolating the square of the specific volume around
each pair of particles. In contrast to Monaghan�s [34] formulation, the force acting on each particle is deter-
mined by solving the Riemann problem in the vicinity of the midpoint between each pair of interacting par-
ticles. This procedure is the analogous of that used in Godunov-type schemes where the Riemann problem
is solved at each cell interface for calculation of the numerical fluxes. While this SPH formulation effectively
relies on solution to the Riemann problem, the results are sensitive to the accuracy of the interpolation used
in the numerical convolution. In particular, when a linear interpolation is employed, the pressure profile is
affected by the presence of unphysical wiggling at the contact discontinuity in both the shock tube and blast
wave problems. The amplitude of the pressure wiggling is only slightly reduced when a cubic spline inter-
polation is used, implying that a much higher-order approximation would be necessary for evaluating the
spatial integrals.

The motivation of this paper is to present a shock-capturing SPH formulation, which is variationally
consistent and works equally well for strong and weak shocks as well as for rarefaction waves. The scheme
is based on a variant of the adaptive kernel estimation procedure described by Silverman [45]. This class of
kernel estimates has the advantage of combining features of both the kernel and nearest neighbor ap-
proaches. The basic idea is to construct an estimate consisting of kernels placed at the observed data points
in such a way as to allow the window width of the kernels to vary from one point to another. In this pro-
cedure, a pilot estimate of the density is first calculated from the usual kernel summation. This yields a pat-
tern of bandwidths, ki, corresponding to the various observation points (or particles). The heart of the
method consists of defining the ki�s as some power of the ratio of the pilot estimates of the density over their
corresponding geometrical means. In this way, the width of the kernels (or local smoothing length) placed
at the observation points is simply kih. As a final step, the adaptive kernel estimator of the density is eval-
uated using the kih�s with the same smoothing kernel summation employed for the pilot estimate. While this
procedure has the disadvantage of requiring a recalculation of the pilot estimate for each new value of the
smoothing length, the accuracy of the SPH calculation will strongly benefit of the fact that the values of ki
constructed this way effectively control the amount of smoothing applied to the data, thus allowing the
adaptive kernel estimate to behave as a bona fide probability density. This is particularly important for den-
sity distributions with long tails, where the density is low, and therefore a much broader kernel would be
required in the way that the nearest neighbor method does. Note that the above procedure differs from that
commonly used in other adaptive SPH calculations [46,47], where a variable smoothing length is enforced
by relating the time rate of change of h to that of the density at each observation point via a differential
equation.

In contrast to Monaghan�s [34] and Inutsuka�s [35] formulations, the shock-capturing scheme proposed
here does not rely on the Riemann problem as a guide to improve SPH. In fact, it is based on standard
symmetrized representations of the SPH equations along with the usual kernel smoothing for the density
so that variational consistency of the scheme is guaranteed [39]. As a further remark, there is no need to
replace the specific internal energy equation with one for the total energy, and what seems to be more
important, the implementation of the adaptive kernel estimation of the density allows for a unique scheme
that works equally well for strong shocks and rarefactions. In order to validate the accuracy of the method
on unsteady compressible flows, we restrict ourselves to the standard analytic test bed of 1D shock
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problems for which the initial hydrodynamical states may be either uniform, as in the usual Riemann
shock-tube and its variants, or spatially varying, as in the impulsive shock problem of Zel�dovich and Rai-
zer [48]. The extension of the method to two-dimensions (2D) is also tested for the cylindrical Noh�s [49]
shock implosion and Sedov [50] point explosion problems.
2. The SPH method

2.1. Fundamental aspects

In SPH, the continuum fluid is represented by a finite set of observation points, or particles, through the
use of a smoothing procedure in which the value f̂ ðxÞ of a function f(x) at a point x, in the domain X, is
approximated by the integral interpolant:
f̂ ðxÞ ¼
Z
X
f ðx0ÞW ðx� x0; hÞdx0; ð1Þ
where W(x � x 0, h) is a smooth (differentiable) function, commonly referred to as the interpolating kernel,
and h is the bandwidth of the kernel, or smoothing length, which determines its support. The kernel func-
tion is defined such that (i) it mimics the Dirac d-function in the limit h ! 0, (ii) its integral over the domain
X is exactly unity, and (iii) W(x � x 0, h) = W(x 0 � x, h).

The SPH estimate of the gradient of f(x) at a point x, say rf̂ ðxÞ, is obtained by using the integral inter-
polant (1) on $f(x) to yield
rf̂ ðxÞ ¼
Z
X
f ðx0ÞrW ðx� x0; hÞdx0; ð2Þ
where we have used integration by parts and neglected residual boundary terms. In a similar fashion, we
can also obtain estimates of higher-order derivatives provided that a higher-order kernel is used.

For numerical work with SPH, the domain X of the fluid is subdivided into a finite set of N particles,
each of mass mb and density qb (with b = 1, 2, . . . , N), such that the sum of their masses equals the mass
of the fluid. With this choice of the discretization, the value of f̂ ðxÞ at the location xa of particle ‘‘a’’,
say fa ¼ f̂ ðxaÞ, is obtained by replacing Eq. (1) with the summation interpolant
fa ¼
XN
b¼1

mb
fb
qb

W ab; ð3Þ
where fb = f(xb) and Wab =W(xa � xb, h). Note that for interpolating kernels of compact support, Wab = 0
when jxa � xbj P nh, where n is some integer (usually <4) that depends on the kernel shape, and so the ac-
tual number of particles that contribute to the summation is much smaller than N. Similarly, the gradient
rf̂ ðxÞ at xa is calculated by replacing Eq. (2) with the summation form
ðrf Þa ¼
XN
b¼1

mb
fb
qb

raW ab; ð4Þ
where $aWab denotes the gradient of W(xa � xb, h) taken with respect to the coordinates of particle ‘‘a’’.
However, higher accuracy for the estimate of the gradient is obtained using the alternative representation
[3]
ðrf Þa ¼
1

qa

XN
b¼1

mbðfb � faÞraW ab; ð5Þ
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where we have made use of the identity q$f = $(qf) � f$q. This form has the advantage that the gradient
vanishes exactly when the function f(x) is constant. A drawback of Eq. (5) is that when implementing it into
the equations of motion to approximate the pressure forces, linear and angular momentum are not
conserved exactly. In addition, it would be difficult to construct a consistent SPH representation for the
energy equation. Therefore, it is common practice in SPH to employ the symmetrized representation
ðrf Þa ¼ qa

XN
b¼1

mb
fa
q2
a

þ fb
q2
b

� �
raW ab; ð6Þ
which results from rewriting $f/q according to the identity $f/q = $(f/q) + (f/q2)$q, which arises naturally
from an action principle [3,35]. Similar forms to Eqs. (5) and (6) can also be derived to approximate higher-
order derivatives.

2.2. SPH hydrodynamic equations

As in most SPH calculations, here the continuous density field at the location of particle ‘‘a’’ is evaluated
via Eq. (3), with f replaced by q, so that
qa ¼
XN
b¼1

mbW ab; ð7Þ
where the summation includes the contribution of particle ‘‘a’’ itself. Eq. (7) is used to replace the continuity
equation. If this form is chosen to calculate the density, variational consistency will demand using a sym-
metrized SPH representation for the equations of motion and thermal energy [39].

If the pressure forces, $p/q, appearing on the right-hand side of the Euler equations are approxi-
mated according to Eq. (6), we obtain the standard symmetrized SPH representation for the equations
of motion
dva
dt

¼ �
XN
b¼1

mb
pa
q2
a

þ pb
q2
b

þPab

� �
raW ab; ð8Þ
where v is the velocity of fluid particles and p is the pressure. Here, Pab is the artificial viscous contribution
to the pressure gradient (see below). An equation of state must be added to close the system of equations
describing the evolution of the fluid. Here we adopt the ideal gas law written as
p ¼ ðc� 1ÞqU ; ð9Þ
where U denotes the specific internal energy and c is the adiabatic index. The time rate of change of U is
determined by the thermal energy equation, which is obtained from the first law of thermodynamics,
dU = �pd(1/q) + Tds, where T is the temperature and ds is the change in specific entropy, which includes
all nonadiabatic effects. For isentropic flows ds = 0 and therefore the fluid experiences only adiabatic heat-
ing and cooling. A variety of forms exists for the smoothed version of the thermal energy equation. In order
to ensure variational consistency of the whole scheme, we use the symmetrized representation
dUa

dt
¼ � 1

2

XN
b¼1

mb
pa
q2
a

þ pb
q2
b

þPab

� �
ðvb � vaÞ þ 2Habðxb � xaÞ

� �
� raW ab; ð10Þ
where the term involving Hab is the artificial heat conduction (see below). The discretized form of the com-
pressional work, on the right-hand side of Eq. (10), is obtained from the identity (p/q)$ Æ v = $ Æ (pv/q)
� v Æ $(p/q) after having taken the arithmetic mean of the resulting smoothed representations of both sides.
In doing so, the following expression:
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ðr � vÞa ¼
1

qa

XN
b¼1

mbðvb � vaÞ � raW ab; ð11Þ
has been used to approximate the divergence of the velocity.
In calculations of compressible fluid flows involving the formation and propagation of shocks, an arti-

ficial viscosity term, Pab, must be added into the SPH equations to dissipate postshock oscillations in the
solution and prevent particle interpenetration in high Mach number collisions. A number of expressions
have been proposed for Pab. One which gives an excellent description of the flow near shocks is that pro-
posed by Monaghan [51], where
Pab ¼
�a�cablab þ bl2

ab

�qab
ð12Þ
if (va � vb) Æ (xa � xb) < 0 and zero otherwise. Here
lab ¼
ðva � vbÞ � ðxa � xbÞ

habðjxa � xbj2=h2ab þ g2Þ
; ð13Þ
�cab ¼ ðca þ cbÞ=2 is the average sound speed between particles a and b, �qab ¼ ðqa þ qbÞ=2, and hab =
(ha + hb)/2, while a and b are dimensionless constants. Typically, a � 1 and b � 2 [46,51]. The parameter
g2 � 0.01 is added to the denominator of Eq. (13) to prevent numerical singularities. This choice of g2

means that smoothing of the velocity will only take place if the particle spacing is less than 0.1h. Implicit
in the form of Eqs. (12) and (13) is that the viscosity is zero for particles moving away from each other and
positive for particles approaching each other. The first term in Eq. (12) is linear in the velocity difference
between interacting particles and is intended to produce a shear and bulk viscosity. The second term is qua-
dratic and is introduced to handle high Mach number shocks. It is similar to the Von Neumann–Richtmyer
viscosity employed in FD methods to smear out strong flow discontinuities. This form of the artificial vis-
cosity is Galilean invariant and so it allows the SPH to perform well for slowly moving shocks as those
involved in the Roberts [43] problem. In addition, it vanishes under solid-body rotation, conserves total
linear and angular momentum, and guarantees that the entropy change due to dissipation is positive
definite.

When the artificial viscosity is used in Lagrangian methods, it may produce errors in the form of exces-
sive heating. In particular, these errors, which are commonly referred to as ‘‘wall-heating’’ errors after Noh
[49], come into evidence in applications to infinite strength shocks, as may occur when two streams of gas
collide supersonically, or when a stream of gas is brought to rest against a fixed wall as in the case of the
wall shock problem. Noh [49] has shown that if an artificial heat conduction term of the form
ð1=qÞr � ðHrUÞ is added to the thermal energy equation, the wall-heating errors are significantly reduced.
Here we use an SPH estimate of this term given by the rule
Hab ¼
2HabðUa � UbÞ

�qabh
2
abðjxa � xbj2=h2ab þ g2Þ

; ð14Þ
where Hab ¼ ðHa þHbÞ=2 is the averaged artificial conduction coefficient (normalized to the density) be-
tween particles a and b, with Ha defined as
Ha ¼ g1haca þ g2h
2
a

�
jðr � vÞaj � ðr � vÞa

�
; ð15Þ
where g1 and g2 are constants. Typically g1 = g2 � 0.5. Note that although Hab, enters the thermal energy
equation as a heat conduction term, it is used only to control the wall-heating. It is activated only for those
particles with (va � vb) Æ (xa � xb) < 0, that is, where the artificial viscosity is nonzero. Furthermore, the
conduction coefficient in Eq. (15) is composed of two terms. The first one is linear in h and is a function
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of the local sound speed. The second term is quadratic in h and depends on the local value of the velocity
divergence. It takes a finite positive value when there is a compression ($ Æ v < 0) and vanishes otherwise. In
the vicinity of a shock, this term dominates over the linear one and determines the magnitude of the con-
duction coefficient. This form of H was employed in early SPH calculations by Libersky et al. [18] and is a
variant of that proposed by Monaghan [51] and Brookshaw [52], where the second term in Eq. (15) is made
proportional to the absolute value of lab as defined by Eq. (13). It is useful to mention here that the artificial
heating also helps to smooth out errors in the velocity field which otherwise can induce a reduction of the
artificial viscosity and hence a sharpening of the shock.

2.3. Adaptive kernel estimation

The primary motivation of this paper is to construct a shock-capturing scheme from standard SPH tools
that is capable to achieve the accuracy of Riemann-based methods for most ideal gas problems. One of such
SPH schemes which relies on a modified form of the dissipative terms was devised by Monaghan [34]. In
this case, the SPH equations were formulated using the total energy equation instead of the thermal energy
equation, as in Riemann solutions of compressible gas dynamics, and the artificial viscosity terms in the
resulting SPH equations were designed in close relation to the properties of 1D solutions to the Riemann
problem. Although this formulation performed quite well on the shock-tube test, it failed to follow all tests
with a unique scheme. For instance, the continuity equation was used for most shock test problems, includ-
ing those involving high Mach number and strong shocks, while use of the kernel summation of the density
was necessary to deal with the Sjögreen [44] test, involving the propagation of two strong rarefaction waves.
Also, significant wall-heating in the wall shock problem and errors in the postshock value of the density for
both the blast wave and wall shock tests were clearly evident.

In this paper, we show that the accuracy of a standard SPH formulation can be significantly improved
if the smoothing is based on an adaptive kernel estimation procedure like the one described by Silverman
[45]. The philosophy behind this class of estimates substantially departs from that commonly used in
existing adaptive SPH calculations, which are mainly based on the nearest neighbor approach [46,47].
For instance, in many applications we encounter solutions where regions of high density coexist with
extended regions of low density, leading to density distributions that are characterized by rather long tails.
A natural way to deal with long-tailed densities in most adaptive SPH schemes is to use a broader kernel
in these regions. As a result, an observation point in the tail would have its mass smudged out over a
wider range than in the main part of the distribution. This may have the disadvantage that a much larger
amount of smoothing is applied to the low-density regions. In contrast, the adaptive kernel estimate of
Silverman [45] copes with this problem by combining intrinsic features of both the kernel and nearest
neighbor approaches in a way that the amount of smoothing applied to the data is effectively controlled.
The basic idea is to construct an estimate consisting of a collection of kernels placed at the observed data
points (or particles) in order to allow the bandwidth (or smoothing length) of the kernel to vary from
point to point.

In the first place the method consists of deciding whether or not a particle in the sample belongs to a low-
density region. This is accomplished by means of a two-stage procedure in which an initial, or pilot, esti-
mate is first carried out to get a rough idea of the density. In the second stage, a pattern of bandwidths
corresponding to the various observations is calculated from the pilot estimates, which is then used in
the final stage to construct the adaptive estimator itself. In order to find a pilot estimate of the density,
say ~qa, we simply use the summation interpolant given by Eq. (7), with Wab = W(xa � xb, h0), where h0
is chosen by reference to an initial distribution. In practice, this value is set by the initial interparticle sep-
aration. In passing, we note that the method is insensitive to the fine detail of the pilot estimate and that
there is no need for it to have any particular smoothness properties. Next, local bandwidth factors, ka, are
defined according to the relation
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ka ¼ k
~qa

�g

� ���

; ð16Þ
where �g is the geometric mean of the density estimates ~qa, given by
log �g ¼ 1

N

XN
b¼1

log ~qb; ð17Þ
k is a constant scaling factor and � is the so-called sensitivity parameter defined in the range 0 6 � 6 1.
For practical applications to compressible gas dynamics, k � 1 and � � 0.5 (see Sections 3 and 4). Finally,
the width of the kernel placed at the location of particle ‘‘a’’ is equal to ha = kah0. With this prescription,
the adaptive kernel estimate is finally constructed by recalculating the density from Eq. (7), with
Wab = W(xa � xb, ha). However, in order to ensure conservation of linear momentum, angular momen-
tum, and total energy the actual kernel estimate that was finally employed in Eqs. (7), (8), and (10) to
update the density, velocity, and thermal energy of the particles was modified by replacing ha by the aver-
age mean [46]
hab ¼ 1
2
ðha þ hbÞ; ð18Þ
which allows symmetrization of the kernel estimate with respect to particle pairs. Alternatively, one can use
the approach suggested by Hernquist and Katz [47], where the kernel itself is symmetrized according to the
expression
W ab ¼ 1
2

�
W ðxa � xb; haÞ þ W ðxa � xb; hbÞ

�
. ð19Þ
According to Eq. (16), the local bandwidth factors, ka, will be more sensitive to variations in the pilot den-
sity for higher values of the power �, implying a greater difference between the bandwidths, ha, in different parts
of the sample. A value of � = 0 will reduce the method back to the fixed width kernel approach provided that
k = 1 in Eq. (16). Furthermore, with the ka calculated as in Eqs. (16) and (17), the ha�s effectively control the
scale of the smoothing applied to the data. In this way, using Eq. (7) to define the pilot estimate makes it to be
sensitive to the same sort of scale as the final adaptive estimate.While this procedure gives better results, it has
the disadvantage of calculating twice the summation interpolant per timestep.However, provided that the ker-
nel function W is nonnegative, the adaptive kernel estimate will be a bonafide probability density. It will not
suffer from the excessively heavy tails as the nearest neighbor method does in the sense that the minimum nec-
essary smoothing will be applied to regions of low density. Although in general this aspect improves the accu-
racy of the SPH method, it becomes particularly important for distributions involving sudden jumps in the
variables as may be the case of phenomena involving strong shocks.

The use of a variable smoothing length would certainly require the inclusion of additional terms on the
right-hand side of Eqs. (8) and (10). These terms, called the $h correction terms, contain the contribution of
the oW/oh derivatives and their form was first derived by Nelson and Papaloizou [54] for the case of
smoothing lengths symmetrized as in Eq. (18). The same authors [55] have also derived the corresponding
form of the $h terms for the kernel symmetrization given by Eq. (19). The need for such terms was first
illustrated by Hernquist [53], who showed that in the simulation of a head-on collision between two poly-
tropic gas spheres, errors of about 10% can occur in the conservation of either energy or entropy, depending
on whether the energy or entropy equations are integrated. Nelson and Papaloizou [55] designed a number
of tests, including the shock tube problem, the gravitational collapse of a cold gas sphere, and the head-on
collision of two polytropes, to study the effects of these corrections on SPH simulations. They found that
for the first two test calculations the inclusion of the $h terms does not alter the ability of SPH to repro-
duce, with reasonable accuracy, the qualitative and quantitative features of the solution. In the third test,
however, where the conservation properties are more critical, the inclusion of the $h terms led to a dramatic
improvement in the conservation of energy and entropy regardless on whether the energy or entropy equa-
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tion was integrated. From their analysis, it then follows that the influence of the $h terms on SPH simu-
lations may be relevant under rather special circumstances. More recently, Alimi et al. [56] considered
the effects of including the $h terms in cosmological simulations. In particular, they found that when
the $h terms are neglected, the density peaks associated to shock fronts are overestimated as a consequence
of the resulting erroneous smaller entropy in these regions. However, the qualitative features of the solution
were reproduced in any case. Based on the results reported by Nelson and Papaloizou [55] on the shock
tube problem, where identical solutions were obtained independently on whether the $h terms are included
or neglected, and considering that these terms seem to be relevant for a restricted class of problems we have
preferred to neglect their inclusion for the calculations of this paper.

The adaptive kernel estimation procedure proposed here can be applied to a variety of other problems of
interest, including systems with components of elastic and inelastic materials such as deformation of elastic
bodies [20,38], fracture of brittle materials [22,24,25,28], and tracking of debris clouds produced by ballistic
impacts on elastic plastic solids [18,21,23,26,27]. Most of these problems require the inclusion of the entire
stress tensor in Eqs. (8) and (19), as in simulations of viscous fluids, and a natural treatment of voids, as in
simulations of dynamic brittle fracture, where existing flaws under tension may eventually evolve into
cracks that must be represented numerically. In particular, the SPH formalism has certain advantages over
other methods for modeling strong material deformation and fracture. Once the damage is calculated and
the material properties degraded, SPH allows for the natural insertion of voids, and unlike conventional
Lagrangian techniques, it avoids mesh tangling and is therefore much more robust in its treatment of prob-
lems with large material distortions. The differential equations describing the dynamics of deformable solids
are identical in form to those for a viscous fluid, except that in the former case the anisotropic part of the
stress tensor (the deviatoric stress) is determined from an extra differential equation for its time rate of
change, which must be included in order to follow the material response to deformations due to strain
and rotations [18]. The symmetrized SPH representations of the momentum and internal energy equation
have a form similar to those given by Eqs. (8) and (10), with the pressure replaced by the components of the
stress tensor. The time rate of change of the deviatoric stress admits an SPH representation as given by Eq.
(44) of Libersky et al. [18]. As in Eqs. (8) and (10), all derivatives in the source part of the equations will
appear in terms of the derivatives of the kernel and therefore the adaptive kernel estimation proposed here
can be applied in the same manner as for the fluid-dynamic equations. This procedure can be employed to
describe strong density discontinuities in solids, as may be the case of strong shocks across material inter-
faces or the occurrence of cracks in brittle fracture problems, provided that some adequate boundary con-
dition treatment is employed. In particular, the kernel estimation procedure given by Eqs. (16) and (17) can
be applied in a straightforward manner with the method of ghost particles described by Randies and Lib-
ersky [31] to deal with irregular and deformable sharp boundaries or material interfaces. In the same way,
the kernel estimation procedure presents no problems when used in conjunction with the more conventional
method of image particles [4] to model regular rigid boundaries.
2.4. Kernel functions

In the calculations of this paper we use both the Gaussian kernel and the cubic B-spline function ofMona-
ghan and Lattanzio [57]. These are among the most widely used interpolation kernels in current SPH simula-
tions. In particular, the Gaussian kernel is modified for compact support according to the prescription
W ðq; hÞ ¼ 1

pm=2hm
e�q2 if 0 6 q 6 3;

0 if q > 3;

(
ð20Þ
so that the kernel goes to zero at a distance 3h from its peak. This provides a limit on the number of neigh-
bor particles. Here q = jx � x 0j/h and m is the number of dimensions. This kernel defines a sequence which
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mimics a d-function in the limit h ! 0 and is infinitely differentiable. As a further choice, we also use the
cubic B-spline kernel [57]
W ðq; hÞ ¼ r
hm

2
3
� q2 þ 1

2
q3 if 0 6 q < 1;

1
6
ð2� qÞ3 if 1 6 q < 2;

0 if q > 2;

8><
>: ð21Þ
where all parameters have the same meaning as before and r is a normalization constant equal to 1 and 15/
7p in one and two dimensions, respectively. With this form of the kernel, the particle interactions are ex-
actly zero at distances from the peak of the distribution greater than 2h. In addition, the second derivatives
are continuous and the dominant error term in the integral interpolants is O(h2). In particular, we find that
the results are essentially independent of whether Eq. (20) or (21) is used.
3. One-dimensional numerical tests

In order to assess the capabilities of the present method we test it against a suite of well-known 1D shock
problems for which the hydrodynamical states are either uniform, as in the standard Riemann shock-tube
problem [41], or spatially varying, as in the impulsive load problem of Zel�dovich and Raizer [48]. In all
cases, the analytical solution is available and so we can provide a direct measure of the accuracy of the
numerical results.

3.1. The shock tube

As a first numerical experiment we consider the classical shock-tube problem [41]. In this test, a dia-
phragm is placed at x = 0 which separates two regions of constant density and pressure. The initial condi-
tions consist of gas at rest with c = 1.4 (qL = 1, pL = 1, UL = 2.5) for the left state (x < 0), and (qR = 0.25,
pR = 0.1795, UR = 1.795) for the right state (x > 0). Note that the same initial parameters were used by
Nelson and Papaloizou [55] and Cha and Whitworth [36]. At t > 0, the diaphragm is broken and the initial
discontinuity splits up into three regions. The first one consists of a rarefaction wave moving to the left
within which the fluid variables are continuous. To the right of the rarefaction tail, there is a second region
which extends up to the location of the contact discontinuity, which gives the position that an element of
fluid initially at x = 0 has reached by time t. Across the contact discontinuity the velocity and pressure are
continuous, while the density and thermal energy are discontinuous. To the right of the contact surface
there is a postshock region bordered by a shock wave moving to the right. With the above initial conditions,
the Mach number of the resulting shock is 1.481.

As in Monaghan [34], we started the calculation by smoothing all initially discontinuous quantities
according to the prescription
A ¼ AL þ ARe
x=d

1þ ex=d
; ð22Þ
where Amay be either q, p, or U. Here AL and AR refer to the left and right states, respectively, and d is half
the largest initial particle separation at the location x = 0 of the initial discontinuity. A total number of
3000 particles were used along the interval �0.6 6 x 6 0.6, of which 600 equidistant particles were placed
to the right of the origin, yielding an initial spacing DxR = 0.001 for x > 0. The remaining 2400 particles
were placed to the left of x = 0 according to the rule
xaþ1 ¼ xa�1 þ
2qRDxR

qa
; ð23Þ
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where qR denotes the gas density to the far right of the origin. For this test case we chose a = b = 1 in Eq. (12)
for the artificial viscosity, g1 = 0.02 and g2 = 0.4 in Eq. (15) for the artificial heat conduction, and k = 0.7 and
� = 0.4 in Eq. (16) for the calculation of the local bandwidth factors ka. In addition, the timestep was fixed to
Dt = 3.0 · 10�4 and the initial value of the smoothing length was set to twice the spacing DxR.

The results for this test are shown in Fig. 1 at t = 0.15. We may see that the numerically calculated solu-
tion (dots) reproduces the exact one (solid line) with very good accuracy. At this time, the contact surface is
at x = 0.101, while the shock is at x = 0.223. The density behind the contact discontinuity is 0.5463 (exact
value 0.5467) and that behind the shock is 0.4576 (exact value 0.4573). These values imply relative errors of
about 7.0 · 10�2% in the density. The postshock pressure is 0.4296 (exact value 0.4293). Starting from the
location of the rarefaction tail (at x = �0.0553), the pressure remains constant up to the shock position.
Note that only an unperceivable wiggle is present around the contact discontinuity. This very small pressure
wiggling is a reflection of the small spike in the thermal energy distribution just ahead of the contact sur-
face. Both features essentially disappear when the value of the constant g1 entering in the linear term of Eq.
(15) is raised to about 0.07. However, as a result of the increased linear artificial heating, the numerical
description of the contact surface will not be as sharp as that displayed in the density- and energy-distance
plots of Fig. 1. The postshock value of the thermal energy is 2.3474 compared to the exact value of 2.3470,
while behind the contact discontinuity the numerically calculated value is 1.9629 (exact value 1.9635). In
addition, from the velocity-distance plot we may see that the numerical solution is free of oscillations be-
hind the shock, with a postshock velocity of 0.6733 in contrast to the analytical value of 0.6731. Also note
that the rarefaction wave and the shock discontinuity are very well reproduced.

We may also see from the density- and energy-distance plots that both the shock and contact disconti-
nuity have almost identical resolution. This is one important aspect of the adaptive kernel estimation method
described in Section 2.3. In particular, Fig. 2 depicts the dependence of ha, normalized to the initial value
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Fig. 1. Results for the Sod�s shock-tube problem at t = 0.15. The gas to the right of the initial discontinuity is represented by 600
particles of equal mass, yielding a uniform spacing DxR = 0.001. The numerically calculated solution (dots) reproduces the exact one
(solid line) with very good accuracy.
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Fig. 2. Spatial dependence of the particle�s smoothing length h, normalized to the initial value h0 = 2DxR, at time t = 0.15 for the same
shock-tube calculation of Fig. 1. The sharp variations of h at the location of the contact surface and shock wave clearly show the
adaptive nature of the calculation.
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h0 = 2DxR, with distance at t = 0.15. The sharp variations of ha at both the shock and contact surface
clearly show the adaptive nature of the smoothing length as determined from Eqs. (16) and (17). Similar
results were obtained when varying the parameters k and � within the intervals (0.9,0.65) and (0.4,0.55),
respectively. However, we found that the best compromise between getting postshock profiles free of oscil-
lations and sufficiently sharp jumps of the hydrodynamical variables across the physical discontinuities was
to choose a sensitivity parameter � around 0.4. In particular, values of � less than 0.4 result in a broader
description of the jumps due to the increased smoothing in regions of lower density.

3.2. The blast wave

We now test the method on the blast wave problem introduced by Woodward and Colella [42]. This test
is a modified version of the shock-tube problem and involves extremely supersonic flows. The initial con-
ditions consist of an ideal gas at rest with c = 1.4 and left (x < 0) and right (x > 0) states given by qL = 1,
pL = 1000, UL = 2500 and qR = 1, pR = 0.01, UR = 0.025, respectively. In contrast to the shock-tube test,
the initial pressure of the gas on the left-hand side is 105 times that of the right-hand side. This results in an
approximately Mach 200 shock. In particular, the blast wave problem is known to be a severe test because
the velocity of the contact discontinuity (exact value 19.60 at t = 0.0075) is close to the shock speed (exact
value 23.52 at t = 0.0075), producing a sharp spike in the density variation just behind the shock. For this
calculation we used 1000 equidistant particles on each side of the initial discontinuity to cover the interval
�1 � x � 1, yielding a uniform spacing Dx = 0.001. The initial smoothing length was set to h0 = 1.5Dx and
the calculation was carried out with a constant timestep (Dt = 5 · 10�6) and a = b = 1, g1 = 0.2, g2 = 0.4,
k = 1, and � = 0.5. For this test no use of Eq. (22) was made to smooth the initially discontinuous physical
quantities.

Fig. 3 shows the numerical results (dots) as compared with the exact solution (solid line) at t = 0.0075,
when the shock is at x = 0.1764. The density and thermal energy variations reproduce very well the ana-
lytical solution except at the contact discontinuity, where the method yields a smooth distribution of the
density and thermal energy. Also, the pressure and velocity distributions show a small wiggle at the contact
surface. When a value of g1 much less than 0.2 is used, the contact discontinuity becomes much sharper at
the expense of a slight increase of the wiggling amplitude. Conversely, higher values of g1 yield wiggles of
much smaller amplitude and broader contact surfaces. For the same test, the calculations of Monaghan [34]
gave a better description of the contact discontinuity towards the upper part of the density spike. However,
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Fig. 3. Results for the one-dimensional blast wave problem at t = 0.0075. The pressure to the left of the initial discontinuity is 105

times that to the right, resulting in an approximately Mach 200 shock. We used 1000 equidistant particles of equal mass on each side of
the initial interface (Dx = 0.001). The numerical solution (dots) compares very well with the exact one (solid line), except at the contact
surface where the method produces a smooth profile.
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in his case the density spike was overestimated by about 10%. By comparison, our calculations yield a post-
shock density of 5.998 (exact value 6.0) for most of the upper plateau. Note that for all quantities the rar-
efaction and the shock waves are also very well described, except for a small wiggling at x = �0.2. We may
also note the small upward spike in the velocity at the shock position. In particular, the postshock values of
the pressure, velocity, and thermal energy are 459.68 (exact value 460.89), 19.71 (exact value 19.60), and
191.58 (exact value 192.06), respectively, which correspond to relative errors of better than 0.3% in the pres-
sure and thermal energy and of about 0.6% in the velocity. In passing, we note that the solutions shown in
Fig. 3 strongly resemble those reported by Inutsuka [35] (see his Figs. 7 and 8) for a similar test but with a
Mach 105 shock, using an SPH method that completely relies on solution to the Riemann problem.

3.3. The wall shock

We now consider the problem of a configuration consisting of a cold stream of gas flowing towards a
solid wall. As the gas hits the wall, a shock front forms which then travels upstream against the incoming
gas, producing a hot, dense postshock region of zero velocity. This problem is the equivalent of a system
consisting of two cold streams of gas, one in front of the other, travelling with oppositely directed velocities.
We take the wall as the x = 0 plane and define the left state (x < 0) as the exact reflection of the right one
(x > 0). We use the same initial parameters of Monaghan [34], namely qL = 1, vL = 1, UL = 10�6 for x < 0
and qR = 1, vR = �1, UR = 10�6 for x > 0, with c = 1.4. Note that only the velocity is discontinuous at
x = 0. We used 800 equidistant particles in the interval �0.1 6 x 6 0.1 to represent the two gas streams,
resulting in a uniform spacing Dx = 0.0005. The initial smoothing length was chosen to be equal to the
interparticle distance and a constant timestep of 1.0 · 10�6 was used throughout the calculation, with



Fig. 4. Num
mass particlespikes cause
a = b = 1, g1 = 0.5, g2 = 1.0, k = 0.7, and � = 0.4. Values of the estimation parameters within the intervals
1.0 6 k 6 0.7 and 0.4 6 � 6 0.6 were seen to produce similar results.

The results for this test case are shown in Fig. 4 at t = 0.1. The position of the shock at this time
(x = 0.02) is very well reproduced. The worst relative errors in the postshock values of the density, pres-
sure, and thermal energy are always better than 0.3%. The velocity is obtained accurately with a sharp
shock and negligible ripples. The postshock velocity is always less than 10�4, except close to the shock
where it degrades to better than 10�2. For the same test Monaghan [34] found a postshock density value
which was 10% in excess of the exact solution along with a pronounced downward spike at the location
of the wall due to significant wall-heating error in his calculation. As a result of this, a small upward
spike was also present in the postshock thermal energy distribution at x = 0. The results of Fig. 4 shows
that the postshock plateaus are very well reproduced and that they are free of the unphysical spikes
caused by the wall-heating error, implying that the present method is also able to handle shocks of very
high strength.

3.4. The Roberts problem

In a well-known paper [43], Roberts found that for a nearly stationary shock, there is a significant
error produced when using Godunov-type methods based on flux difference splitting algorithms. The
error appears in the form of a long wavelength noise, which is generated in the discrete shock transition
layer and is transported downstream. This error is a consequence of the nonlinear character of the
hydrodynamical equations and cannot be damped out by the inherent dissipation of the Godunov
schemes. A discussion on the nature of this error along with a heuristic explanation of it was provided
by Colella and Woodward [58] in the context of their PPM method. In particular, they constructed
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erical results (dots) for the wall shock problem as compared to the exact solution (solid line) at t = 0.1. We used 800 equal-
s in the interval � 0.1 6 x 6 0.1, yielding a uniform spacing Dx = 0.0005. The postshock solution is free of the unphysicald by the wall-heating error.
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additional numerical dissipation terms to minimize the oscillations. However, as pointed out by Mona-
ghan [34], SPH presents no difficulties on this test problem because of its Galilean-invariant nature.

The Roberts problem consists of a Mach 3 shock wave moving slowly from left to right in a c = 1.4 gas.
The postshock state is given by qL = 3.86, vL = �0.81, pL = 10.33, while the preshock state is qR = 1,
vR = �3.44, pR = 1. These initial conditions are the same employed by Xu et al. [59] and Monaghan
[34]. With this choice of the initial parameters, the shock speed is vsh � 0.11 and its location at time t is given
by x = x0 + vsht. Here we take the plane x0 = 0 as the starting shock. In order to speed up the calculation
we add a constant velocity (v = 0.42) to the values of vL and vR. In doing so the position of the shock at any
time (t > 0) is just x = (vsh + v)t. After a sufficiently long time, an accurate description of the shock will de-
mand using a relatively large number of initial particles. As shown in Fig. 5, sharp enough shock profiles
are obtained by placing 7500 uniformly spaced particles to the left of the shock (covering the interval
�4.8 6 x 6 0) and 2500 particles to the right (covering the interval 0 < x 6 8). With this resolution
DxL = 0.00064 and DxR = 0.0032. The calculation was performed with a constant timestep
Dt = 1.0 · 10�4, h0 = DxR, and the same parameters as for the wall shock test, except that k = 1 and
� = 0.5. Fig. 5 depicts the shock structure at t = 1.5 in the evolution. At this time the shock is located at
x = 0.794 and the results are comparable to those reported by Monaghan [34] and Xu et al. [59]. The den-
sity and pressure jumps are very well resolved and the postshock profiles are free of the long wavelength
oscillations reported by Roberts [43]. Similarly, well-resolved shock profiles were also obtained for the
velocity and thermal energy.

3.5. The Sjögreen problem

A further test model deals with a Riemann problem whose initial data are given by qL = 1, vL = �2,
pL = 0.4, UL = 1 for the left state (x < 0) and qR = 1, vR = 2, pR = 0.4, UR = 1 for the right state
(x > 0). Here c = 1.4. One state is the mirror of the other and so reflected boundary conditions can be used
at x = 0. This problem was discussed by Einfeldt et al. [44] and its solution consists of two strong rarefac-
tion waves, one travelling to the left and the other to the right. Since the fluid flow is directed away from the
origin, a region of very low density and pressure forms within the rarefactions. For the above initial state,
the Mach number M (� 2.67) < 2/(c � 1) and therefore no vacuum will occur in the solution. In addition,
since
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the solution is positively conservative (that is the density and thermal energy are positive) but not linear-
izable. Most Godunov-type schemes whose interface fluxes are derived from a linearized Riemann solution
are not positively conservative and so they fail on this test problem [44].

For this calculation we used 800 uniformly distributed particles covering the spatial range �1 6 x 6 1,
with 400 particles placed on each side of x = 0. This yields an interparticle distance Dx = 0.0025. Good re-
sults were obtained by first smoothing the initial density through the use of Eq. (7), with h0 = 2.5Dx, and
then recalculating the smoothing length according to h0;a ¼ 2ma=qa, where ma is the mass of particle ‘‘a’’
and qa its initial smoothed density. The calculation was performed with a = b = 1, g1 = 0.1, g2 = 1.0,
k = 0.5, � = 0.1, and a constant timestep Dt = 1.0 · 10�3. Since no shocks are involved in this test, identical
results were obtained by switching off the artificial viscosity (a = b = 0) and artificial heat conduction
(g1 = g2 = 0) terms in Eqs. (8) and (10). Fig. 6 shows the numerical solution (dots) as compared to the exact
one (solid line) at t = 0.3. The characteristic U profiles for the density and pressure are accurately repro-
duced along with the condition that these quantities remain positive. The worst relative errors occur in
the central part, where the density and pressure of the two particles closest to x = 0 are 0.022 (exact value
0.015) and 0.0024 (exact value 0.0011), respectively. The position of the rarefaction heads is also well repro-
duced by the numerical solution. The dependence of the linear momentum (qv) with distance also compares
satisfactorily with the exact behavior. Higher accuracy on this test problem near x = 0 can be obtained by
increasing the initial number of particles. In particular, the velocity is by far more sensitive to the initially
allowed resolution than all other quantities. This can be readily inferred from the resulting velocity profile,
where the slopes of the two-rarefaction straight lines and the extension of the joining plateau differ from the
exact solution. Similar results for the velocity were also obtained by Einfeldt et al. [44] using a conservative
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Fig. 6. Numerical results (dots) for the Sjögreen problem in which two high-speed, strong rarefaction waves move apart from each
other, as compared with the exact solution (solid line). We used 800 particles of equal mass in the interval �1 6 x 6 1, yielding a
uniform spacing Dx = 0.0025. The characteristic U shape of the density and pressure arising from the rarefactions is accurately
reproduced by the numerical solution. A much better agreement of the velocity with the exact solution can be obtained with finer
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differencing Godunov method based on the original Roe scheme and by Monaghan [34] and Cha and Whit-
worth [36] using their shock-capturing SPH schemes.

3.6. Impulsive load in an inhomogeneous atmosphere

In contrast to all previous cases, we now test the response of the method for a 1D model problem in
which the initial hydrodynamical state is spatially varying. In particular, we consider the self-similar motion
of a shock wave, induced by a strong explosion, in the direction of increasing density as described by Zel�-
dovich and Raizer [48]. The unperturbed state consists of an inhomogeneous gas at rest with zero pressure
and density given by the exponential law
qðxÞ ¼ q0 exp
x
D

� 	
; ð25Þ
where D is a constant and q0 is a reference density. Let an impulsive load be applied at some initial time t0
somewhere in the region of low density. As a result, a shock wave arises which then travels through the gas
in the direction of increasing density, while the heated gas expands in the opposite direction. If we define x0
as the location of the shock front at time t0, a Riemann problem can be constructed with the left (x 6 x0)
and right (x > x0) states given by
qLðx; t0Þ ¼ q0

cþ 1

c� 1

� �
ð1þ 2n0Þ�5=2

;

vLðx; t0Þ ¼ g
2

cþ 1

� �
D
t0

� �
ð1� n0Þ;

ULðx; t0Þ ¼ 2
g

cþ 1

� �2 D
t0

� �2

ð1þ 2n0Þ;

ð26Þ
and
qRðx; t0Þ ¼ q0 expð�n0Þ;
vRðx; t0Þ ¼ 0;

URðx; t0Þ ¼ 0;

ð27Þ
respectively, where D is the characteristic scale of the impulsive width, n0 = (x0 � x)/D is a dimensionless
distance, and g is a numerical coefficient that depends only on the specific heat ratio c.

An exact solution for t > t0 exists when c = 2 (for which g = 3/2) and is given by [48]
qLðx; tÞ ¼ 3qðxfÞð1þ 2nÞ�5=2
;

vLðx; tÞ ¼
Dð1� nÞ

t
;

ULðx; tÞ ¼
1

2

D
t

� �2

ð1þ 2nÞ;

ð28Þ
for x 6 xf(t), and
qRðx; tÞ ¼ q0 expð�n0Þ;
vRðx; tÞ ¼ 0;

URðx; tÞ ¼ 0;

ð29Þ
for x > xf(t). Here xf(t) = x0 + 1.5D ln t is the coordinate of the shock front, which varies logarithmically
with time, and n = [xf(t) � x]/D. The shock velocity decreases with time and is given by vsh = 1.5D/t. As
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the starting point of the calculation we use t0 = 2, x0 = 6, q0 = 1, and D = 4 as in Shashkov and Wendroff
[60], and compare the SPH solution with both the exact one as given by Eqs. (28) and (29) and their com-
posite Lagrangian FD code solution. Fig. 7 shows the exact data for the density at the initial time t0 = 2
(dashed line) and at t = 6 (solid line) when the shock front has moved to x = 12.59.

This test calculation was carried out using 3000 uniformly spaced particles, with 750 particles for
0 6 x 6 6 and 2250 particles for 6 < x 6 18 such that Dx = 0.006. Other parameters are a = b = 1,
g1 = g2 = 1, k = 1, � = 0.5, Dt = 1.0 · 10�3, and h0 = 2Dx. The dots in Fig. 7 shows the numerical solution
at t = 6. The small inset box displays a blowup of the immediate postshock density profile. Except for a
2.34% relative error in the peak value of the density (exact value 15.59; numerical value 15.22), the numer-
ical solution overlaps the exact one. The shock front is also very well resolved with the position of the peak
happening at x = 12.57 (exact value 12.59). Similarly, accurate results were also obtained for the spatial
dependence of the pressure, velocity, and thermal energy.
4. Two-dimensional tests

The extension of the method to 2D is here tested for both the Noh�s [49] shock implosion and the Sedov
[50] point explosion problems in cylindrical geometry. For both tests calculations, the numerical results are
compared with the exact solutions.

4.1. The Noh problem

The uniform implosion of an ideal gas was conceived by Noh [49] as a stringent test case for shock-cap-
turing codes. The problem consists of a c = 5/3 gas of finite uniform density and zero pressure moving radi-
ally inward at constant speed. A cylindrical shock of infinite strength is then generated when the cold gas is
brought to rest at the axis of symmetry (r = 0). The initial conditions for a cylindrical mass distribution of
unit radius (0 6 r 6 1) are q(r, 0) = q0 = 1, v(r, 0) = v0 = �1, U(r, 0) = U0 = 0, and p(r, 0) = p0 = 0. For
cylindrical geometry, Noh found the analytical solution to be a shock moving radially outward with speed
vsh = 1/3 and postshock and preshock values given by [q+ = 16, v+ = 0, U+ = 1/2, p+ = 16/3] and
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[q� = q0(1 + t/r), v� = v0 = �1, U� = U0 = 0, p� = p0 = 0], respectively. At the shock position (rsh = t/3),
the value of the preshock density is exactly 4. This value is independent of time and hence leads to the con-
stant postshock profiles given above.

For this test, we choose the (r, /)-plane to represent the flow and distribute the particles along the
perimeter of n concentric circles around the axis of symmetry. The radial separation between consecutive
circles is Dr = 1/n such that R = nDr = 1 is the radius of the outermost circle, where the boundary condition
v(R = 1, t) = �1 is applied. The number of particles per circle increases with increasing radius according to
Nj = 4j, where j = 1, 2, . . . , n. Therefore, the angular interparticle separation decreases with increasing ra-
dius and is given by D/j = p/(2j). With this choice, the innermost circle (j = 1) will always be composed of
only four particles, each of mass m1 = p(Dr)2q0/4, separated in angle by p/2. Accordingly, the mass of all
particles belonging to the jth circle is given by
Fig. 8
t = 0.6
and a
mj ¼
ð2j� 1Þ

j
m1; ð30Þ
for j = 2, 3, . . . , n. In this way, the increase of the particle mass with radius is limited to the small range
1 6 mn/m1 6 (2n � 1)/n. Two independent calculations were performed with 29,040 and 61,600 particles,
corresponding to n = 120 (Dr � 0.0083) and 175 (Dr � 0.0057) concentric circles, respectively. As for the
wall shock test, we chose a = b = 1, g1 = 0.5, and g2 = 1. For the density estimation parameters we used
k = 0.9 and � = 0.4 along with h0 = Dr and a constant timestep Dt = 5.0 · 10�4.

Early SPH calculations of the cylindrical Noh�s shock problem were carried out by Libersky et al. [18],
who used comparable spatial resolution (15,482 and 60,000 particles) and the same form of the artificial
viscosity and heating given by Eqs. (12)–(15). A comparison with their results is therefore useful to pro-
vide further evidence of the increased resolving power of the adaptive kernel estimation. The outcome of
the evolution is shown in Fig. 8, where the density and thermal energy are plotted as functions of the
radius for each particle at t = 0.6. The solid line depicts the exact solution, while the asterisks and open
circles correspond to the numerical profiles for the low- (29,040 particles) and high-resolution (61,600
particles) runs. Note that all SPH particles fall on one curve, implying that symmetry is achieved by
the calculations. A surface density plot is also shown in Fig. 9 at t = 0.6 for the high-resolution case.
As it is well-known, the presence of wall-heating results in an extreme dip in the density with a corre-
sponding overshoot in the thermal energy at the origin (r = 0). These features persist even working with
finer resolution (see Fig. 1 of [18]). For both resolutions, the results of Fig. 8 are superior to those re-
ported by Libersky et al. [18], where the presence of an extreme density dip close to the axis is evident
and the shock is poorly resolved. Although a density dip is still present in Fig. 8 (q � 15.29 and 15.39 for
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the low- and high-resolution runs; exact value 16), it is much smaller than that observed with other
codes, including the FD composite scheme of Shashkov and Wendroff [60] at comparable spatial resolu-
tion (see their Fig. 4(b)). It follows from Fig. 8 that the high-resolution calculation produces similar post-
shock profiles and a slightly sharper shock compared to the low-resolution run. Because of the coarse
radial resolution allowed here, the description of the shock is not as sharp as those seen in the 1D model
calculations of Section 3. For this 2D problem, we therefore expect to see the solution improve with the
use of finer radial resolution.
4.2. The Sedov problem

As a final test calculation, we consider the Sedov point explosion problem in cylindrical geometry, which
involves the self-similar propagation of a cylindrical blast wave from a d-function initial pressure perturba-
tion in a homogeneous medium at rest. The analytical solution for this problem was originally derived by
Sedov [50], under the assumption that the atmospheric pressure relative to that inside the explosion is
negligible.

The point explosion is assumed to occur at the origin (r = 0) at time t = 0. In the self-similar cylindrical
blast wave that develops at t > 0, the density, velocity, and pressure are all functions of the similarity var-
iable n = r/R(t), where
RðtÞ ¼ b�1 et2

q0

� �1=4

ð31Þ
is the radius of the shock. Hence, the surface n = 1 represents the outgoing shock wave. In Eq. (31), q0 is the
density of the homogeneous medium, e is the quantity of energy deposited at r = 0, and b is a constant of
order unity to be determined. At any time t > 0, the state behind the outgoing shock (0 6 n 6 1) is deter-
mined by the self-similar solution
qLðr; tÞ ¼ q0GðnÞ;

vLðr; tÞ ¼
r
2t
V ðnÞ;

c2Lðr; tÞ ¼
r2

4t2
ZðnÞ;

ð32Þ
where c is the sound speed and the dimensionless functions G(n), V(n), and Z(n) are related to one another
by means of the following equations:
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n2 ¼ ðcþ 1Þ2

4
V ð2� cV Þ

" #�1
ðcþ 1Þ
ðc� 1Þ ðcV � 1Þ

� �ðc�1Þ=c

; ð33Þ

G ¼ cþ 1

c� 1

� �
2ð1� V Þ

ðc� 1Þð2� cV Þ

� �2=ðc�2Þ ðcþ 1Þ
ðc� 1Þ ðcV � 1Þ

� �1=c
; ð34Þ

Z ¼ cðc� 1Þ
2

ð1� V ÞV 2

ðcV � 1Þ . ð35Þ
Eq. (33) can be solved implicitly for V using a Newton–Raphson iteration algorithm. Once the functional
dependence of V with n is determined this way, the functions G and Z can be obtained by straightforward
evaluation of Eqs. (34) and (35), respectively. The solution is completed by solving numerically the integral
b4 ¼ p
2

Z 2=ðcþ1Þ

1=c
n4GðV Þ 1

2
V 2 þ ZðV Þ

cðc� 1Þ

� �
d ln n
dV

dV ; ð36Þ
where the finite limit V = 1/c when n = 0 represents a singularity for the above integral and therefore it
must be removed from the numerical integration. Numerical solution of the integral (36) gives
b � 1.0094.

At the shock position (n = 1), V(1) = 2/(c + 1) and so from Eqs. (32), (34), and (35) it follows that
qLðR; tÞ ¼
cþ 1

c� 1

� �
q0;

vLðR; tÞ ¼
2

ðcþ 1Þ vshðtÞ;

pLðR; tÞ ¼
2

ðcþ 1Þ q0v
2
shðtÞ;

ð37Þ
where we have used p = c2q/c and
vshðtÞ ¼
dRðtÞ
dt

¼ RðtÞ
2t

; ð38Þ
is the shock velocity as obtained from Eq. (31).
For this test calculation, we consider a c = 1.4 gas of uniform density q0 = 1 everywhere and initial pres-

sure p0 = 1.0 · 10�5 except at the origin (r = 0), which corresponds to the explosion point. Energy deposi-
tion in a single point r = 0 is approximated by storing a quantity of energy e = 1 into a small circular area
of radius r0 = 0.025 at the center. This raises the pressure in the small area to
p00 ¼
ðc� 1Þe

pr20
. ð39Þ
These initial parameters are the same used by Omang et al. [37], who derived an SPH formulation for cur-
vilinear coordinates based on new kernel functions for spherically and cylindrically symmetric problems,
and Owen et al. [61], who employed an adpative SPH algorithm for evolving anisotropic smoothing lengths
in which the local mean interparticle spacing varies not only in time and space but also in direction as well.
In passing, we note that Eq. (39) is the bursting balloon analogue energy deposition suggested by Brode [62]
and represents an approximate way to model an explosive point charge. To the right of the expanding
shock (n > 1), the state at any time is given by qR(r, t) = q0, vR(r, t) = 0, and pR(r, t) = p0.

As for the Noh�s shock calculation, we choose the (r, /)-plane to represent the flow. A circular area of
radius Rc = 0.30 is filled with particles distributed along the perimeter of n concentric circles, each contain-
ing Nj = 10j particles with j = 1, 2, . . . , n. With this choice, the radial separation between consecutive circles
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is Dr = Rc/n and the angular interparticle distance decreases with increasing radius according to D/j = p/
(5j). The mass of a particle belonging to the jth circle is as given by Eq. (30), where m1 = p(Dr)2q0/10 is the
mass of a particle pertaining to the innermost circle (j = 1). As for the 1D impulsive shock test of Section
3.6, we chose a = b = 1, g1 = g2 = 1, k = 1, � = 0.5, and h0 = 2Dr. Two independent calculations were
performed using 32,400 and 61,050 particles, corresponding to n = 80 (Dr = 0.00375) and 110
(Dr = 0.0027) concentric circles, respectively. The timestep was fixed to Dt = 1.0 · 10�4 for the low resolu-
tion calculation and to Dt = 5.0 · 10�5 for the higher resolution run.

In Fig. 10 we show the radial profiles of mass density, pressure, and velocity at time t = 0.05. The solid
line depicts the axisymmetric exact solution, while the asterisks and open circles correspond to the numer-
ical solution for the low (32,400 particles) and higher resolution (61,050 particles) runs, respectively. In
spite of the coarse radial resolution allowed in both cases, the strong jumps in the density, pressure,
and velocity are fairly well reproduced and are considerably sharper than those obtained by Omang
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Fig. 10. Azimuthally averaged radial profiles of mass density, pressure, and radial velocity for the 2D cylindrical Sedov blast wave
calculation at t = 0.05. The numerical profiles (asterisks: 32,400 particles; open circles: 61,050 particles) are compared to the exact
solution (solid line). The location and sharpness of the shock are fairly well reproduced.



et al. [37] for the same test calculation. With comparable radial resolution, the adaptive calculations re-
ported by Owen et al. [61] show a similarly resolved shock whose position at t = 0.04 is, however, slightly
shifted to the right compared to the analytical solution. The calculations converge to a peak shock density
of �4.27 and 4.57 (exact value 6) in the low and higher resolution cases, respectively. Similar peak density
values were also obtained by Shashkov and Wendroff [60] using different grid refinements with their com-
posite Lagrangian code. At t = 0.05, the pressure and velocity peaks are (�3.81, �1.89) for the low reso-
lution run and (�3.60, �1.83) for the higher resolution calculation compared to (�4.09, �1.846) for the
exact solution. By t = 0.05 the exact shock position is at x � 0.22. As shown in Fig. 10, the higher reso-
lution run (open circles) results in sharper shock profiles and in a better overall agreement with the exact
behavior. Within the shock, the numerical profile for the density fits better the analytical solution than the
pressure and velocity. This is a consequence of having approximated the intense point source of thermal
energy with a finite area of radius r0 = 0.025 at the center. The results are therefore dependent on the
choice of this radius. According to Omang et al. [37], an increase of r0 leads to a better convergence of
the numerical velocity profile to the exact solution and a poorer fit of the density and pressure. The con-
verse occurs if the value of r0 is reduced. Fig. 11 displays a kernel plot at t = 0.05 for the higher resolution
calculation. For clarity only about a quarter of the total number of particles is shown. The adaptive
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character of the kernel estimation is clearly seen by the smallest circles occurring on the shock front. It is
evident that azimuthal symmetry is fairly well maintained and that the round shape of the shock front is
reproduced. These features are also seen in Fig. 12, which displays a surface plot of the mass density field
for the same calculation. Similar plots were also obtained for the lower resolution run. As for the impulsive
load test of Section 3.6, we expect that the strength of the peak shock density will improve by using a finer
radial resolution.
5. Conclusions

We have described a simple method that converts standard SPH into a working shock-capturing scheme
without relying on solutions to theRiemann problem.The fluid dynamic equations arewritten in symmetrized
SPH form and the density is obtained from the usual kernel summation so that variational consistency of the
whole scheme is guaranteed [39]. The only change with respect to existing standard SPH formulations, is the
implementation of an adaptive kernel estimation of the density following the procedure described by Silver-
man [45], which combines intrinsic features of both the kernel and the nearest neighbor approaches in a way
that the amount of smoothing applied to the data is effectively controlled. In this procedure, a pilot estimate of
the density is first calculated from the kernel summation. Local bandwidths corresponding to the various par-
ticles are next defined as some power of the ratio of the pilot estimates over their geometrical means, which are
then used to construct the adaptive kernel estimator itself. In this way, the minimum necessary smoothing is
effectively applied in regions where the density is low.While, in general, this feature improves the accuracy of
the SPH method, it becomes particularly important near sharp discontinuities as in the case of phenomena
involving strong shocks.

Unlike existing SPH formulations based on Riemann solvers [34–36], the adaptive kernel estimation
allows for a unique scheme that handles strong shocks and rarefactions the same way. When the method is
applied to high Mach number compressible flows with sharp discontinuities, the accuracy of the results
is comparable, and in most cases superior, to that obtained from either Godunov-type methods or SPH
formulations based on Riemann solutions. The accuracy of the method has been validated for a series
of analytic, one-dimensional (1D) shock problems for which the hydrodynamical states may be either
uniform or spatially varying. In particular, for problems involving infinite strength shocks, as in the
blast wave [42] and wall shock test models, the method reproduced the exact solution with very good
accuracy. Similarly good results were also obtained for the Sod�s [41] shock-tube test and for the impul-
sive load problem in an inhomogeneous atmosphere [48]. The method was also seen to perform well for
problems where Godunov�s schemes fail such as the Roberts [43] problem, involving the propagation of
a nearly stationary shock, and the Sjögreen [44] test, where two rarefaction waves move apart. The
extension of the method to two dimensions was first tested against the cylindrical Noh�s [49] problem
in which the time evolution is an infinite strength, circularly symmetric shock moving outward. The
results for this test were seen to agree reasonably well with the analytic solution, yielding a considerably
less pronounced density dip at the origin compared to previously reported calculations based on either
finite-difference Godunov�s methods or standard SPH formulations. Sharper shock profiles for the
Noh�s problem would result using finer resolution. As a second stringent experiment, the method
was tested against the Sedov [50] point explosion problem. In spite of the rather course radial resolu-
tion employed for this test calculation, the adaptive kernel estimation method was seen to produce a
sufficiently sharp and round outgoing shock front. The agreement of the numerical solution with the
exact behavior was seen to be similar to that obtained in previous calculations of the Sedov blast wave
with either adaptive SPH formulations or refined finite-difference codes. We have no reasons to doubt
that similar results for the tests tried here could be achieved in three dimensions provided that the cal-
culations are performed with comparable radial resolution.
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